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Abstract :  Causal Inference is a discipline that involves discovering the causal connections between various statistically related 

quantities. Unlike Statistical Analysis, which focuses on answering the question of “what?” Causal inference is concerned with 

answering the question of “why?”. Causal inference has significant applications in the fields of Health-care, Finance, etc. In this 

paper, we will be exploring some fundamental concepts in Causal Inference and how it is used in the field of medicine and finance. 

In Section I we will be providing an introduction to the concept of causality, moving to the Section II we will be looking at various 

aspects of causal inference. Following that we will see basic concepts of causal model. In section IV, V we will be discussing the 

implementation of causal in the field of health-care and finance. 

 

IndexTerms - Causal Inference, Health-care, Finance, Bayesian Networks, Granger’s Causality. 

I. INTRODUCTION 

The question of why has always plagued humanity, fueling its insatiable curiosity and though sometimes it leads to distress it is 

also the driving force behind discovery and innovation brought forth by the discovery. These questions are often about causes of the 

current state of being or the outcomes of various types of interventions carried out to change it, regardless of their field. In Health-

care, the cause and effect concern various treatments and their ability to better an individual’s health, whereas in Finance the questions 

are about the outcomes of the implementation of an economic policy and such questions concern causality. Moreover, Correlation 

does not imply causation and misconstruing correlation as causation is caused by cognitive biases like the Availability Heuristic and 

Motivated Reasoning [1]. The difference between association and causation is that unlike causation, association can be determined 

by the distribution alone whereas Causal Inference requires that the outcomes of dynamic conditions for example various treatments 

and interventions, to also be considered [2]. Causal problems depart from statistical problems because the underlying model is not a 

fixed joint distribution of random variables but a structure that has multiple such distributions [3]. 

II. CAUSAL INFERENCE 

Causal inference is the way to determine the effects of a particular type of intervention performed, we can take for example a 

treatment(T) that is used to treat stomach aches(C) and the outcomes of decision(Y). The causal graph would like this: 

 

 
Fig. 1 Causal Graph 
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Let do(T=1) that the patient receives the treatment T, similarly let do(T=0) signify not receiving the treatment. The outcomes 

will be Yi|do(T=1) and Yi|do(T=0) , respectively. For a simpler notation we will use Yi(1) for the individual getting the treatment and 

Yi(0) for the individual not getting the treatment. The causal effect can be then defined as  

Yi(1) - Yi(0) (1) 

 

Assuming that Yi(1) = 1 and Yi(0) = 0 that is the outcome of treatment is that the stomach ache goes away when the individual 

takes the treatment and stays the same if they don’t take the treatment.  

 

Thus, Yi(1) - Yi(0) = 1       ...(2) 

There lies a fundamental problem with this statement, that only one of these observations can be calculated, i.e. it is factual, the 

other cannot be calculated, i.e. it is counterfactual. We cannot know both the effects of taking the treatment and not taking the 

treatment for an individual. This is referred to as the basic issue of causal inference. 

 

We looked at the individual treatment effect (ITE), and found it to be 

 

Yi(1) - Yi(0) = 1   (2) 

 

Let us look at the effect of mean treatment 

 

E[Yi(1) - Yi(0)] = E[Y(1)] – E[Y(0)] (3) 

 

But,  

E[Yi(1) - Yi(0)] ≠ E[Y|T=1] – E[Y|T=0] (4) 

 

This is because Y(1) represents a random person in whole population who was assigned the treatment whereas Y|T=1 represents 

a random person in the subset of the population that took the treatment and these quantities are fundamentally different because of 

confounding associations that influence the treatment decision. The prior quantity is a causal quantity while the latter is not a causal 

quantity. 

 
 

Fig. 2 Confounding Association 

 

The cause influences the treatment, which is not ideal because it adds other associations that are not causal to the outcomes, hence 

randomized control trials are carried out to have the treatment be independent of the cause. That is T cannot have causal parents 

and the groups have to be comparable 

 

 
 

Fig. 3 Causal Association 
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ATE when there are no causal parents for T, i.e. no confounding associations: 

 

E[Yi(1) - Yi(0)] = E[Y|T=1] – E[Y|T=0] 

 

(5) 

 

2.1 Ignorability/Exchangeability 

To ensure that ATE is equal to associational difference, we need ignorability/exchangeability, i.e. we need Y to be independent 

of T 

(Y(1), Y(0)) ╨  T  (6) 

 

If Y is independent of T, 

E[Y(1)] – E[Y(0)] = E[Y(0)|T=1] – E[Y(0)|T=0] (7) 

 

becomes, 

E[Y(1)] – E[Y(0)] = E[Y|T=1] – E[Y|T=0] (8) 

 

The quantities of E[Y(1)] and E[Y(0)] are causal, whereas the quantities E[Y|T=1] and E[Y|T=0] are statistical. Thus, they are 

identifiable because a causal quantity that can be computed purely from a statistical quantity is an identifiable causal quantity.[4] 

 

The way this can be done is through RCTs where the causal graph would look like Fig 3. 

 

Exchangeability is not readily available in observational data and conditional exchangeability/unconfoundedness needs to be 

used.[5] Consider the causal graph in Fig. 1 

Conditional Exchangeability is 

 

(Y(1), Y(0)) ╨  T | C (9) 

 

Therefore, Conditional ATE is 

 

E[Y(1) – Y(0) | C] = E[Y(1) | C] – E[Y(0) | C] (10) 

E[Y(1) – Y(0) | C] = E[Y(1) | T=1, C] – E[Y(0) | T = 0, C] (11) 

E[Y(1) – Y(0) | C] = E[Y | T = 1, C] – E[Y | T = 0, C] (12) 

 

For calculating actual ATE we need an adjustment formula: 

 

E[Y(1) – Y(0)] = ECE[Y(1) – Y(0) | C] (13) 

E[Y(1) – Y(0)] = EC[E[Y | T = 1, C] – E[Y | T = 0, C]] (14) 

 

Conditional Exchangeability is an untestable assumption because we can never truly know all the if all the confounding factors 

have been accounted for. 

 

2.2 Positivity 

Another condition that needs to be met is Positivity, that is there needs to be at least some entities for each layer of confounding 

factors [5] that is for all covariates x present in the population of interest 

 

0 < P(T = 1 | X = x) < 1 (15) 

2.3 No Interference 

The third assumption is the no interference assumption, that is the treatment assignment of other people is considered to have no 

effect on the possible results of one individual [6]. 

 

2.4 Consistency 

The fourth and final assumption is consistency, this implies that the exposure is described with sufficient clarity that alternative 

versions of the exposure have no different influence on the result [7], i.e. there should not be no two versions of a treatment 

T = t => Y = Y(t)  (16) 

Combining these assumptions to find ATE we get: 
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Assuming no interference, 

 

E[Y(1) – Y(0)] = E[Y(1)] - E[Y(0)]    (Linearity of Expectation) 

E[Y(1) – Y(0)] = Ex[E[Y(1) | X] – E[Y(0) | X]]   (Law of iterated expectations) 

E[Y(1) – Y(0)] = Ex[E[Y(1) | T = 1, X] – E[Y(0) | T =0 | X]] (Unconfoundedness) 

E[Y(1) – Y(0)] = Ex[E[Y|T = 1, X] – E[Y | T = 0, X] (Consistency) 

 

III. CAUSAL MODELS 

Causal models are the way to convert a Causal Estimand to a Statistical Estimand by defining the Causal assumptions. 

 

 
 

Fig. 4 Role of Causal Model in Causal Inference 

 

The causal mechanism is the effect a parent in a Causal Graph has on its child. The modularity assumption states that an 

intervention on node Xi should only cause changes in the mechanism P(Xi | pai) and all other mechanisms should remain unchanged.

  

 

3.1 Backdoor Adjustment 

There are two types of data that we encounter while doing causal inference, observational data and interventional data. To 

maintain the assumption of modularity we need to block backdoor paths from the treatment to the result. 

 

S meets the back-door criterion [8] if  

i) it stops every path from X to Y with an arrow into X, and  

(ii) no node in S is a descendant of X. Then 

 

Pr (Y | do(X = x)) = ∑s Pr (Y |X = x, S = s) Pr (S = s)  

 

(17) 

 

3.2 Front-door Adjustment 

S meets the front-door requirement if  

(i) it blocks all directed pathways from X to Y,  

(ii) there are no unobstructed back-door routes from X to S, (iii) X prevents all back-door paths from S to Y. Then, 

 

Pr (Y |do(X = x)) = ∑s Pr (S = s|X = x) ∑x’ Pr (Y |X = x’, S = s) Pr (X = x’) 

 

(18) 

 

3.3 Structural Causal Model 

 

A structural causal model is a set of Structural Equations. Structural Equations are written as follows: If A causes B, then 

 

B := fB(A, UB) 

 

Here UB are the unknown confounding factors that might influence B.  
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Fig. 5 Causal Graph with unknown confounding factors 

 

For a causal model that is represented by the above graph, the structural causal model will be: 

 

B := fB(A, UB) 

 

M : C := fC(A, B, UC) 

 

D := fD(A, B, C, UD) 

. 

IV. CAUSAL INFERENCE IN HEALTHCARE 

According to the patient in question, the main aim of causal inference applied with machine learning in healthcare is to discover 

better matching drugs and personalized diagnosis. A particular diagnosis or a drug may work for some patient and may not work 

for other, while both experiencing the same symptoms [9]. In 2017, the US alone reported approximately more than 1.7 million 

cancer cases. With an expectancy of more than 600,000, the Agency of Health-Care Research and Quality added that it cost about 

80.2 billion USD as an Economic Impact due to cancer [10]. Another such disease is Alzheimer’s Disease which comes under the 

Neurological Diseases [11].  

 

Causal machine learning and simulation to this increasing data of patients and help discover what new treatment methods work 

for who and at what time. Causal machine learning helps in simulation and asking many if-else questions to then provide a 

conclusive diagnosis for a particular individual. Thus, precision medicine considers many factors, including individual environment, 

lifestyle, and genes [12]. Precision medicine does not only forecast risks and consequences but also weigh interventions. Thus, in 

addition to risk assessment and mortality predictions using machine learning, causal inference can also help in intervention, decision 

support, and precision medicare [13]. Interventions are key to causal inference as it measures how a situation would be in case of a 

particular occurrence. And thus, we not only take into consideration the association of various parameters but also ask the question 

that why did this association originate in the first place.  

 

Electronic Health Records (EHR) with some reassessment to maintain internal validity can be used for causal inference 

frameworks. Although single stage, contextual knowledge is absent in EHR, bias such as sampling bias and protopathic bias, 

selection bias, or indication bias can make the inference and causality less accurate, leading to fatal consequences [13]. Randomized 

Controlled Trials (RCT) can reduce many biases observed in EHR [14] making them valid for causal inference but this is not 

possible always [15] and thus RCTs cannot be considered as the ideal standard for inference and there isn’t a perfect standard yet 

[16,17,18,19]. Causal Inference, explanation, modeling go hand in hand as inference takes a set of observations as an input 

producing causal relationships. These relationships can be used to create causal models. In addition to this, causal models can also 

use prior knowledge. An explanation is achieved when one observation is combined with previous causal relationships to explain a 

certain occurrence [16]. The explanation is important with causality as we need to understand and answer why a particular patient 

was diagnosed with a disease and what history and factors lead to this conclusion. In the subsequent paragraphs, we shall cover few 

approaches to large-scale inference. 

 

 

4.1 Bayesian Networks 

Probabilistic models can be used to determine and quantify relationships between variables. This requires a large amount of data 

and tracking probabilities in fully conditional models may get cumbersome. The problem is usually that the domain information 

needed to completely define the dependency on random variables is missing. If available, it may be impractical to calculate the 

complete conditional probability. Thus, one intermediate method is to develop a model that retains a known conditional dependence 
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between random and conditional variables, therefore bridging the gap between a completely conditional model and a fully 

conditionally independent model. Bayesian networks are a probabilistic graphical model that captures the known conditional 

dependency in a graphical model with directed edges. The conditional independence in the model is described by all missing 

connections. Bayesian networks are therefore less restrictive than the Naive Bayes classifier's overall assumption of conditional 

independence, but more tractable than discarding all assumptions of conditional independence [30]. Two popular graphical models 

are the Hidden Markov Model and Bayesian Networks. The Hidden Markov Model is a graphical model with undirected graphical 

edges that indicates that the graph is cycling (HMM). Bayesian networks are more restricted in that the diagram's edges only point 

in one direction. As a result, cycles are not conceivable, and the graph is referred to as a directed acyclic graph (DAG). Undirected 

graphs are better at describing soft restrictions between random variables, but guided graphs are better at conveying causal 

connections between random variables [31]. A probabilistic graphical model, such as the Bayesian network, enables the definition 

of a probabilistic model for a complicated issue by describing all of the conditional assumptions for independent variables, allowing 

for the existence of unknown variables. 

 

 
Fig. 6 Bayesian Network 

 

In the above example the probability of Wet Grass is conditionally dependent on Rain. Moreover, the probability of Wet Grass 

is may also be conditionally dependent on Sprinkler as both have the potential to cause Wet Grass. Probability of Sprinkler when 

conditionally dependent on Cloud, Rain will be equal to the probability of Sprinkler when it is conditionally dependent on Cloud 

as Sprinkler is conditionally independent of Rain and hence Bayesian Networks follow the local Markov property. Bayesian 

Networks are being used in various application such as [32]: 

 

4.1.1 Automated Insight 

An application of Business Intelligence is to go through a large number of reports in a way to find the means to a better 

decision-making process for the firm. Many times, manual analysis may lead to irrelevant and non-essential findings. 

Bayesian Networks can help identify if a piece of information in the report is essential for analysis or not, thus giving 

automated insights. This approach can be semi-automated or fully automated. 

 

4.1.2  Anomalous Patterns 

The data patterns represented by the dataset are sometimes not as expected or usual. In problems such as disease outbreaks, 

it is difficult to build a pattern using datasets. Predictions are generally made by comparing data patterns of current data 

with a baseline distribution. But, the prevalence of various patterns in health care records, such as trends triggered by the 

day of the week and seasonal fluctuations in temperature and weather, makes determining the baseline a challenging task. 

Creating the baseline distribution without considering these patterns will result in unacceptably high false-positive counts 

and long detection periods. Wong et al. [36] presented WSARE 3.0, which replaced baseline distribution with Bayesian 

Networks taking into account the joint distribution of the data and conditioning on characteristics that are responsible for 

the trends. 

 

4.1.3 Anomaly Detection 

Supervised problems of anomaly detection require a large dataset containing labeled data. The dataset must have inputs 

and outcomes as well. Adding to this balanced data helps in more accurate classification results. It is difficult to detect 

future anomalies using past anomalies. A labeled dataset is not present in unsupervised anomaly detection. Because 

deviations emerge from hostile or rare occurrences of unknown distributions, anomaly identification is seen as an 

unsupervised learning issue. However, the prediction performance of unsupervised anomaly detection alone frequently 

falls short of the needed detection rates in a variety of activities, and labeled data is required to assist model construction 

[33]. In this context, Görnitz et al. [33] proposed a semi-supervised anomaly detection approach. Since they can 

accommodate high-dimensional data that humans find difficult to understand, Bayesian networks are well adapted for 

anomaly detection. Although certain anomalies are easily observable when individual variables are plotted, many 

anomalies are much more complex and are dependent on the association of many variables and the Bayesian network helps 

in portraying such associations. 
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4.1.4  Time series 

In many applications, analysis can be done by using the data itself. But, In the case of forecasting a time series, each 

previous value becomes a possible attribute for use in the network model representing the mechanism that generated the 

time series. This increase in statistical complexity, along with the potential to improve the forecast model using data sources 

other than the time series being forecasted, emphasizes the need for an autonomous approach for defining the forecast 

model. Novobilski et al. [34] suggested a technique for updating a Naive Bayesian classifier by looking for connections in 

the data that will result in a model for the underlying process that creates the time series data. Dagum et al. [35] worked in 

the same context by using Bayesian Networks to figure out more realistic dependencies for forecasting using time series. 

  

Some more applications include Decision automation, Cost-based decision making, Decision support, and Decision making under 

uncertainty [32]. 

 

The idea of inference using Bayesian Networks is to figure out the set of graphs that represent the data to its best potential. Thus, 

it is learning the structure of a Directed Acyclic Graph (DAG) from data. Supposing we have tabular data on Lung cancer, 

Bronchitis, Fatigue, and Chest X-rays of a set of patients we might learn a Directed Acyclic Graph like: 

 

 
Fig 7. DAG example 

 

There are two ways to learn the structure: 

 

1. Score based approach: 

 

• DAGs are awarded scores depending on the data. 

• Finally, we select the DAG with the highest score. 

 

2. Constraint-based approach: 

 

• We attempt to learn the DAG using conditional independencies based on the data. 

• The DAG's edges reflect causal dependency. Edges that are missing indicate independence. 

Three key assumptions are needed to infer these graphs from data: faithfulness, CMC, and causal sufficiency [16]. 

 

Bayesian networks have major applications in Epidemiological data as they can be used to detect and predict the causes, risk 

factors, frequency, patterns related to diseases. Twardy et al. [20] use Epidemiological data for risk assessment of coronary heart 

disease by building Bayesian Networks and applying a Bayesian Network learner. Su et al. [21] begin their discussion of the use of 

Bayesian Networks for discovering relationships between Genetics, environment, and disease by first describing the Bayesian 

Network approach and its applicability to disease detection taking into account factors such as Genes and the patient's environment. 

They then describe some methods for learning structure from observational data. Mani et al. [22] in their Bayesian Local Causal 

Discovery (BLCD) algorithm attempted to figure out a causal link between infant deaths. BLCD could find six probable causes 

such as Heart Malformations, Hydrocephalus, Weight gain, Microcephalus, Diaphragmatic Hernia, and Apgar Score out of which 

according to them three seemed to be plausible. Adding to this Bayesian Networks may be disadvantageous as it doesn’t guarantee 

a cause and effect relationship as it encodes only directional information and not bi-directional information. Also, as DAG is data-

dependent, if data has three depending parameters making a cyclic relationship then Bayesian Networks will not be able to model 

this. 

 

4.2 Dynamic Bayesian Networks 

Any event is characterized by a certain time frame and it is not generally represented at a particular point of time or instance. The 

concept of time is extremely essential in the field of AI, Data Science for reasoning as it gives meaning to the data patterns over 

time. Similarly, almost every disease has time as a major factor in play. A disease cannot be represented in a single-stage but has to 

be represented over multiple stages of time. Although Bayesian Networks succeed in the causal inference of variables, they fail to 

consider the temporal components. Dynamic Bayesian Networks represent a structure that changes or evolves dynamically over 

time. This model would allow users to track and update the system over time, as well as forecast future system behavior. Changing 
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the nature of the static BN to model dynamically can then be viewed as adapting it to a dynamic model [37]. A state-based model 

depicts the state of each variable at discrete time intervals; hence, a dynamic Bayesian network consists of a sequence of time slices, 

each of which displays the value of each variable at time t. Edges between multiple variables from different time slices show 

direction following the flow of time. As in Bayesian Network, DBN have a CPT for each node. DBN is predicated on two 

assumptions. The first is that the network adheres to the first-order Markov Model, which implies that the state variable t is reliant 

on the state variable at (t-1). Second, the model's structure and parameters stay constant, i.e., the values may vary but the parameters 

remain constant. 

 

 
Fig. 8 Dynamic Bayesian Network Example 

 

 

 
Fig. 9 Dynamic Bayesian Network for Fever 

 

Charitos et al. [23] improved a decision-theoretic network used to help clinicians in detecting and treating pneumonia patients. 

They used a Dynamic Bayesian Network model to overcome the complexities of ventilator-associated pneumonia diagnosis. A 

significant disadvantage of the decision-theoretic network was solved by utilizing DBN, since pneumonia could be represented 

across a series of time and therefore the progression of pneumonia is recorded over a specific period. Dynamic Bayesian Networks 

also have applications in neuroscience. Eldawlatly et al. [24] illustrated how DBNs may be used to estimate the effective connection 

between spiking cortical neurons based on their observed spike patterns. DBNs may deduce the underlying non-linear and time-

varying causal relationships between these neurons and differentiate between mono and polysynaptic connections between them 

under specific constraints regulating their putative connectivity. Zou et. al. [25] used DBNs to predict gene regulatory networks. In 

addition to this, they overcame two of DBN’s drawbacks i.e. relative low accuracy and large computational time by limiting 

potential regulators and using time difference initial change of a regulator and its potential target gene. Despite their widespread 

use, DBNs have two limitations: the first is that there are no techniques for verifying complicated relationships, and the second is 

that each link between each time slice is inferred independently [16]. 

 

4.3 Temporal Approach 

Bayesian Networks and Dynamic Bayesian Networks are unable to decipher the relationships from the given data which can 

consider the factors of time and sequence of factors contributing to a particular disease. When the objective is to infer disease causality 

for disease detection and patient diagnosis, the time and sequence of variables contributing to disease become critical. Instead of "a 

causes b," the temporal method might infer correlations such as "Smoking and asbestos exposure can cause lung cancer for 1 to 3 
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years."[16]. In this context, Kleinberg et. al. [26] developed a new algorithm based on a framework that combines concepts of 

philosophical causality with algorithms based on model checks and statistical methods for the test of various hypotheses. In general, 

a set of logical formulae is created and verified using data, and then a measure of causal significance is computed that compares 

probable causes with alternative explanations to evaluate an average difference between a cause and its impact likelihood. The test is 

applied to a set of data from a time series and provides a set of key associations rather than the structure of a graph. To do so, a 

collection of logical formulas is first constructed utilizing context information or generated by constructing all feasible logical 

formulas among the variables in the dataset up to a maximum number indicating probable causal links. 

V. CAUSAL INFERENCE IN FINANCE 

Machine learning in finance works best for some use-cases in which a particular prediction is involved and there are fewer 

regulations, laws, and restrictions involved.  

 

5.1 Machine learning applications in Finance 

5.1.1 Credit Scoring: 

   Credit risk assessment is used to measure a person's credit risk and creditworthiness. Loan applicants are frequently assessed 

using a credit scoring system, which is frequently based on logistic regression (LR). It is taught through the use of historical records, 

such as credit history [38]. The main aim is to classify a loan-seeking entity into Good or Bad. A Good predicted entity is likely to 

repay the financial loan. A certain threshold can be set for credit score for making the loan decision [39]. Credit scoring is generally 

used when a customer requires a small amount of loan. A set of questions are asked as inputs to the credit scoring model. Based on 

the vast historical data on loan defaults and payments a credit score is evaluated which is used by banks before lending out loans. 

Kennedy et. al. [39] proposes an in-depth study on Machine Learning algorithms and their usage for credit scoring. Since credit 

history is confidential and data is not available in abundance Niu et al. [40] suggested a novel technique to credit rating based on 

social networks. The purpose of this research is to assess the accuracy of social network data in predicting loan default. They 

gathered social network data from borrowers' mobile phones and used logistic regression to examine the link between social network 

data and loan default. 

 

5.1.2 Algorithmic Trading: 

    Machine learning help in stock forecasting by using statistical models. The algorithms use real-time stock market data to predict 

the future behavior of the particular stock’s portfolio. According to Morgan Stanley research from 2012, computer algorithms 

performed 84 percent of all stock trades in the United States Stock Exchange, while human investors performed only 16 percent 

[41][42]. A large amount of information needs to be processed to analyze the behavior of one particular stock. When hundreds of 

stocks are involved with millions of customers machine learning performs better in analyzing them simultaneously in real-time. 

Ning Lu et al. [42] investigate different Machine Learning methods such as Logistic Regression, Nave Bayes, and Support Vector 

Machines to forecast the performance of S&P 500 companies. Deep Learning is also implemented for algorithmic trading use cases. 

Chen et. al. [43] implemented Long Short-term Memory Deep Neural Network to forecast the stock price of Intel Corporation. 

Théate et. al. [44] proposes a novel Deep Reinforcement Learning trading strategy for maximizing the resulting Sharpe ratio 

efficiency indicator across a wide range of capital markets. 

 

5.1.3 Portfolio Management: 

    Portfolio Management is an online wealth management tool that uses statistical points to maximize client assets and automated 

algorithms. For example, customers achieve their financial objectives to save a certain amount of time. The consultant then assigns 

current asset variants and prospects to investments. The management of portfolios includes the development and supervision of 

selected investments in accordance with long-term financial objectives and risk tolerance for investors. Asset management activities 

include portfolio creation, risk management, resource management, infrastructure and implementation, and sales and marketing. 

Machine learning techniques such as processing of unstructured data, supervised learning, validation techniques, unsupervised 

learning, and reinforcement learning can be used for the above-mentioned tasks. Derek Snow [47] explores these techniques in-

depth for portfolio management. Many investment firms have made use of Artificial Intelligence and Machine Learning to enable 

asset managers to evaluate risk and manage portfolios of their clients. BlackRock Aladdin [45] and Axyon SynFinance [46] are two 

such financial investment firms.  

 

5.1.4 Fraud Detection: 

    Using machine learning banks can track a lot of transactions from each account simultaneously. A suspicion may arise if a 

customer’s bank transactions don’t fit the pattern based on its historical data concerning payments, loans, etc. Any malicious 

behavior may be detected quickly and frauds can be avoided efficiently using machine learning. Machine Learning-based fraud 

detection helps find hidden and complex correlations of data, Automated fraud detection, and real-time processing and has several 

benefits over the rule-based approach [48]. For the identification of frauds, Babu et al. [49] presented a strategy for dealing with 

severely skewed financial data that utilizes a convolutional network. This research study uses the collaboration of convolutional 

neural network layers to decrease misclassification and false positives in an attempt to develop a model for identifying credit card 

fraud with a high degree of accuracy. They earned a 99.62 percent accuracy rate. 

 

While machine learning performs very well for the above-mentioned use-cases, it isn’t always the go-to approach in finance. Many 

use-cases in finance consist of a large number of rules, regulations, and just prediction will not solve the purpose. Things need to 

make sense in such cases and machine learning prediction techniques generally perform badly. A problem in which multiple time 

series are to be considered to reach a particular solution like what would be the GDP of nation A based on the GDP time series of 

B. Many such time series move simultaneously like the stock market. In order to get accurate forecasting, the interrelation of the 

http://www.jetir.org/
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two time series is to be found out. Another example could be if a city A with poor revenue wants to increase its revenue, it would 

try to imitate that time-series pattern of a rich revenue city B. Thus, a situation in which two time series are linked such that one 

time series can be predicted using the lagged values of a different time series causality comes into the picture and here we say that 

one-time series granger causes the other. Causality in finance can be applied using Granger’s causality which not only helps in 

accurate forecasting but can also reason as to why certain things happen with respect to others leading to more precise, less biased, 

and more reliable estimators of causal effects. 

 

5.2 Granger’s Causality 

Granger’s Causality is one of the main methods in the literature to analyze directional connectivity, that is, whether a factor 

influences another and in what way. The idea of Granger’s causality is that given the two time series A and B can we predict the 

current values of A using past values of B, better than the using past values of A itself. And if the answer is yes then we say that 

there is a Granger causal interaction of B on A. Moreover, the prediction might not work from A to B as direction is vital in 

Granger’s causality.  

 

Autoregressive models can help us understand Granger’s causality. We forecast the variable of interest in a multiple regression 

model using a linear combination of predictors. In an autoregression model, we forecast the variable of interest by utilizing a linear 

combination of the variable's previous values. Autoregression is defined as a regression of a variable against itself [51]. (19,20) is 

a univariate autoregressive model, while (19,21) represents a bivariate autoregressive model (21). These aid in calculating Granger's 

causality (22) 

𝐗𝑡 = 𝑎1𝐗𝑡−1 + 𝑎2𝐗𝑡−2 + ⋯ + 𝑎𝑛𝐗𝑡−𝑛 + 𝑒𝑡𝑥 
 

𝐗𝑡 = ∑𝑛=1
𝑘  𝑎𝑛𝐗𝑡−𝑛 + 𝑒𝑡 

 

 

(19) 

𝐘𝑡 = 𝑏1𝐘𝑡−1 + 𝑏2𝐘𝑡−2 + ⋯ + 𝑏𝑛𝐘𝑡−𝑛 + 𝑒𝑡𝑦 

𝐗𝑡 = ∑𝑛=1
𝑘  𝑎𝑛𝐗𝑡−𝑛 + 𝑒𝑡 

 

 

(20) 

𝐗𝑡 = 𝑎1𝐗𝑡−1 + ⋯ + 𝑏1𝐘𝑡−1 + ⋯ + 𝜖𝑡𝑥𝑦 

𝐗𝑡 = ∑𝑛=1
𝑘  𝑎𝑛𝐗𝑡−𝑛 + ∑𝑛=1

𝑘  𝑏𝑛𝐲𝑡−𝑛 + 𝜖𝑡 

 

 

(21) 

𝐺𝑟𝑎𝑛𝑔𝑒𝑟′𝑠 𝐶𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 = log (
Var [𝑒]

Var [𝜖]
) 

 

(22) 

 

A time series X(t) granger generates a time series Y(t) if the lagged values of X(t) aid in forecasting future values of Y(t) [27,28].  

 

  Yt=F(Y(t-p),Xtp) (23) 

 

We don’t just compute Granger’s causality for a complete range of time series. Instead, we compute GC for various small ranges 

called windows due to the ever-changing nature and dynamics of the time series. We keep on sliding the window to get a graph for 

granger’s causality over the complete time series. One can have a small window or a long window and each has its own pros and 

cons. A small window model estimation is bad but it has better temporal precision whereas in a long window model estimation is 

good as we have more data to fit in the model but temporal precision is bad. A typical time window is about 100ms to a few seconds. 

Another parameter is the model order which is the time which we are incorporating in past values of a time series to predict the 

current value of another time series. A higher model order is more sensitive to history but has bad model estimation and requires 

longer computation time whereas a lower model order has better model estimation with faster computation time but it is less 

sensitive to historical values. 

 

Granger causality happens when two conditions are met.  Firstly, cause happens prior to the effect and secondly, the cause has 

information about the future values of its effect. This signifies that Y(t) should be a function of X(t-1) but not X(t). The lag factor 

is important in granger’s causality. In contrast to Dynamic Bayesian Networks, the method does not seek to find the collection of 

relationships that best describe a specific dataset, but rather assesses the importance of each relationship which avoids overfitting 

of data. Granger causality is a “bottom-up” technique in which the data-generating processes in each time series are assumed to be 

independent variables; the data sets are then evaluated to see if they are connected. A “top-down” approach, on the other hand, 

assumes that the processes are not independent; the data sets are then examined to see whether they were created independently 

from each other [50]. Although being vital in causality between 2 time series, Granger’s causality fails when a third time series Z(t) 

that is if X(t) affects Y(t) through Z(t) then we may not be able to forecast and find granger’s causality. Moreover, Granger’s 

causality may not be the true causality for a given problem or use case.  Chen et. al. [29] considered non-linear extensions to the 

concept of Granger and proposed an approach which is applied to several chaotic time series as well as to non-linear signals for 

extended Granger causalities allowing us to evaluate the causal link between 3 or more time series. 
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